Harbourfront Technologies
  • Home
  • Articles
  • News
  • About
  • Home
  • Articles
  • News
  • About
Derivative Valuation, Risk Management, Volatility Trading
Picture

Close-to-Close Historical Volatility Calculation Volatility Analysis in Python

4/30/2020

0 Comments

 

In a previous post, we touched upon a stock’s volatility through its beta. In this post, we are going to discuss historical volatilities of a stock in more details.

Also referred to as statistical volatility, historical volatility gauges the fluctuations of underlying securities by measuring price changes over predetermined periods of time. It is the less prevalent metric compared to implied volatility because it isn't forward-looking.

When there is a rise in historical volatility, a security's price will also move more than normal. At this time, there is an expectation that something will or has changed. If the historical volatility is dropping, on the other hand, it means any uncertainty has been eliminated, so things return to the way they were. Read more

There are various types of historical volatilities such as close to close, Parkinson, Garman-KIass, Yang-Zhang, etc. In this post, we will discuss the close-to-close historical volatility.

The close-to-close historical volatility (CCHV) is calculated as follows,

historical volatility in python

where xi are the logarithmic returns calculated based on the stock's closing prices,  and N is the sample size.  In this example, N=22, the average number of trading days in a month.

We implemented the above equation in Python. We downloaded SPY data from Yahoo finance and calculated CCHV using the Python program. The picture below shows the close-to-close historical volatility of SPY from March 2015 to March 2020.

volatility trading in python

It’s observed that the volatility is a mean-reverting process. The CCHV has the following characteristics [1]

Advantages

  • It has well-understood sampling properties
  • It is easy to correct bias
  • It is easy to convert to a form involving typical daily moves

Disadvantages

  • It is a very inefficient use of data and converges very slowly

Follow the link below to download the Python program.

 

References

[1] E. Sinclair, Volatility Trading, John Wiley & Sons, 2008

 

Post Source Here: Close-to-Close Historical Volatility Calculation – Volatility Analysis in Python



0 Comments

    Archives

    April 2023
    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    September 2019
    August 2019
    April 2019
    March 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017

    RSS Feed

Powered by Create your own unique website with customizable templates.