Harbourfront Technologies
  • Home
  • Articles
  • News
  • About
  • Home
  • Articles
  • News
  • About
Derivative Valuation, Risk Management, Volatility Trading
Picture

Garman-Klass-Yang-Zhang Historical Volatility Calculation Volatility Analysis in Python

6/30/2020

0 Comments

 

In the previous post, we introduced the Garman-Klass volatility estimator that takes into account the high, low, open, and closing prices of a stock. In this installment, we present an extension of the Garman-Klass volatility estimator that also takes into consideration overnight jumps.

Garman-Klass-Yang-Zhang (GKYZ) volatility estimator consists of using the returns of open, high, low, and closing prices in its calculation. It also uses the previous day's closing price.  It is calculated as follows,

Volatility trading strategy Garman-Klass-Yang-Zhang estimator

where hi denotes the daily high price, li is the daily low price, ci is the daily closing price and oi is the daily opening price of the stock at day i.

We implemented the above equation in Python. We downloaded SPY data from Yahoo finance and calculated the GKYZ historical volatility using the Python program. The picture below shows the GKYZ historical volatility of SPY from March 2015 to March 2020.

Garman-Klass-Yang-Zhang Historical Volatility Trading Strategy

We note that the GKYZ volatility estimator takes into account overnight jumps but not the trend, i.e. it assumes that the underlying asset follows a GBM process with zero drift. Therefore the GKYZ volatility estimator tends to overestimate the volatility when the drift is different from zero. However, for a GBM process, this estimator is eight times more efficient than the close-to-close volatility estimator.

Follow the link below to download the Python program.

Post Source Here: Garman-Klass-Yang-Zhang Historical Volatility Calculation – Volatility Analysis in Python



0 Comments

Garman-Klass Volatility Calculation Volatility Analysis in Python

6/23/2020

0 Comments

 

In the previous post, we introduced the Parkinson volatility estimator that takes into account the high and low prices of a stock. In this follow-up post, we present the Garman-Klass volatility estimator that uses not only the high and low but also the opening and closing prices.

Garman-Klass (GK) volatility estimator consists of using the returns of the open, high, low, and closing prices in its calculation. It is calculated as follow,

Volatility Analysis in Python Garman-Klass

where hi denotes the daily high price, li is the daily low price, ci is the daily closing price and oi is the daily opening price.

We implemented the above equation in Python. We downloaded SPY data from Yahoo finance and calculated GK historical volatility using the Python program. The picture below shows the GK historical volatility of SPY from March 2015 to March 2020.

Garman-Klass Volatility in Python

The GK volatility estimator has the following characteristics [1]

Advantages

  • It is up to eight times more efficient than the close-to-close estimator
  • It makes the best use of the commonly available price information

Disadvantages

  • It is even more biased than the Parkinson estimator

 

Follow the link below to download the Python program.

 

References

[1] E. Sinclair, Volatility Trading, John Wiley & Sons, 2008

Article Source Here: Garman-Klass Volatility Calculation – Volatility Analysis in Python



0 Comments

    Archives

    April 2023
    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    September 2019
    August 2019
    April 2019
    March 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017

    RSS Feed

Powered by Create your own unique website with customizable templates.